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In this paper we study the evolution of random distortions of the front of an MHD shock 
wave, propagating in the direction of decreasing density of the conducting medium. It is 
found that a magnetic field oriented perpendicular to this direction amplifies the instability. 

Initially sinusoidal distortions of the front acquire with time a more complicated form, 
which corresponds to sinusoidal acceleration of the motion of the advanced elements of the 
front and their steepening. This apparently leads to the phenomenon of toppling and turbuli- 
zation of the front. 

The stability of a shock-wave front with respect to its curvature has now been studied 
for approximately 20 years (see, for example, [i]). It has been found that the front of a 
shock wave in the so-called evolutionary propagation regime in a uniform medium is stable and 
regenerates its form free of distortions by random perturbations. However, in the case of 
propagation in a medium with decreasing density, both plane and spherical fronts are unstable. 
This was first shown for gasdynamic shock waves in the absence of a magnetic field [2, 3]. 
Qualitatively, the instability effect is associated with the fact that shock fronts are 
accelerated in a direction opposite to the density gradient. Therefore, for example, an 
element of the front which has accidentally moved ahead of the regular front is located in a 
region with lower density and its velocity is higher, so that its lead increases. 

The velocity of the front as a function of its position can be successfully approximated 
by the formula [4] u(x) ~ p-~, where ~ = 2 + (2y/y -- 1)I/2 and y is the adiabatic index. A 
magnetic field in a conducting medium, if its intensity vector is parallel to the front, in- 
creases the effective adiabatic index of the medium [5] and correspondingly changes the 
parameter X. The acceleration of the unperturbed front increases and the rate of growth of 
fluctuation displacements in it as a function of time also increases [6]. In addition, the 
latter increase with time according to a power law, but always much more rapidly than the 
growth of the velocity of the regular front. Of course, the existence of an instability in 
the theoretical respect must be confirmed by a nonlinear (with respect to the degree of devia- 
tion) calculation, which was done in [7]. Here, this calculation is performed in the general 
case of an MHD shock wave. 

We shall study a strong MHD shock wave, in which the gas pressure in front of the front 
can be neglected. We shall assume that the magnetic field in the unperturbed medium H(x) is 
oriented along the front, parallel to the y axis. In addition, we assume that the medium 
is ideally conducting, so that the condition of freezing in of the magnetic field is satisfied. 

We assume that the curvature of the front depends on y, and we assume that the unperturbed 
wave propagates along the x axis. We denote the coordinate of the unperturbed front by X(t) 
and the coordinate of the perturbed front by E(y~ t) = X(t) + ~(y, t) and we assume that the 
derivative [d~/dyl is small enought so that the method of iterations can be used. 

We shall write down the boundary conditions which relate the gasdynamic quantities in 
front of and behind each section of the curved front. According to [8], the local boundary 
conditions, corresponding to continuity of the flows of mass, momentum, energy, magnetic-field 
component normal to the section of the front, and of the tangential component of the electric 
field have the following form: 

{p(v x -- ~ cos~O)} = O, 

--p'~2cos20-[-p-~-pv2x-~- ~-~ - - t g O  p~,xVy-- ~ j = 0 ,  

- - - ~ J - - t g O ~ p - ~ g v ~  t +  8~ / ~ = 0 ,  
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{H x -- tg 0 H u) = O, {(~'x -- g)Itu -- vyIIx} = O. 

Here, the braces indicate the difference in the corresponding quantities behind and in front 
of the section of the front; p, p, s, w are the pressure, density, specific internal energy, 
and enthalpy of the gas behind the front; the zero index denotes unperturbed quantities in 
front of the front; Vx and Vy are the components of the gas velocity in the laboratory coordi- 
nate system, i.e., in the coordinate system where the gas is at rest in front of the front; 
0 = 0(y, t) is the slope angle of the section of the curved front in the (y, z) plane of the 
unperturbed front, so that cos 0 = 1 -- (i/2)(d~/dy) 2 In the absence of a magnetic field, 
the boundary conditions assume the form of the well-known relations on an inclined shock 
front [7]. 

Eliminating the quantities Vy, Hx, we obtain a system of three independent equations, 
determining the shock adiabat: 

{P(% - -  ~ cos~O)} = O, 

- p~.~cos 2 o + p* + ~ + ~ ~r o (H~ --  Ho) = O, 

( l )  

where p* = p + H2/8~; w* = w + H=/4~0; po = H~/8~. If the front of the shock wave were to be 
displaced from the point X to the point (X + ~(t)), while remaining in the (y, z) plane, 
then its velocity would be equal to the value u(X+ ~), i.e., the function determined by the 
solution of the problem of the motion of the unperturbed front in a medium with a nonuniform 
density. We shall assume that this solution (for example, of a self-similar type) is known. 
In this case, the boundary conditions on the front are satisfied for some definite values of 
the gasdynamic quantities p = ~(X + ~), p = ~(X + ~) v = ~(X + ~), H---- H(X + ~). Small distortions of 
the front also cause, generally speaking, small changes in the gasdynamic quantities. In 
the boundary conditions (i), we now write p=~q-Sp, p=pq-S9, E -- u(Xq- ~)+Su, where 

~ =-~ - ~ / ~ x  -:  (~?2 i~u /~x~  + . . . .  

We shall now implement the iteration procedure. Thus, in the first approximation with 
respect to the curvature parameter of the front I d$/dy I << i, we obtain a system of equations 
for the indicated small deviations of the gasdynamic quantities, which in the case of a perfect 
gas with an adiabatic index according to [6] has the form 

- - p - - - - ~ + - E  = o ,  

~ -  p--j-/ T + v - = o ,  

where the index 1 denotes fluctuations of first order with respect to the curvature parameter 

Idr In addition, the following relations are used: @*=--p~Sv, 8p=--(pc~/~)Sv, ~=?p/~, 

%*=~?p/p + . The last relations occur in the so-called quasiclassical approximation, .Vs  
when the inequality k~ >> i, where k = ~ is the characteristic wave number" of the perturba- 

tion and I = (d in po/dx) -I is the characteristic distance over which the density changes, 
holds [6, 7]. In order to resolve the question of instability, it is sufficient to determine 
if there are any perturbations which grow with time. In preceding studies it was shown that 
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the form of the perturbations studied here, corresponding to the quasiclassical approximation, 
leads to an instability of the front. Over a wide range of variation of the adiabatic index 
1 < y < 2, the solution of the system (2) has the form 5p~ = 0, 6Ox = 0, 6ux = 0. From here 
follows the spontaneous growth of the displacement ~ (for either sign of this quantity), be- 
cause the quantity du/dX is positive for a very wide class of solved problems. 

We shall examine fluctuations of gas-dynamic quantities on the front in second order 
with respect to the curvature parameter. In this case, because ~p~ = 0, ~9~ = 0 and so on, 

we can write ~p=~p~,~v=~vs,~u=5~=~--~---~-d-~T. Iteration in the system (i) in the 

approximation studied leads to the following inhomogeneous system of equations with respect 
to the enumerated corrections, 

~o 
0 9. (p P0) - po ~ ~ -  + p 6 ~ -  (~ - Po) 6~ = - 

U, 

--P ~ p  + (+ pc,'- ~oU) 8 ~ -  ~oV6~ = -  o " (~0" + -rr176 (.~ _ "o)~, 
Po 

H o v ~ u--~ ~p+(~- ~ + 4)~v- o~= -- 
9o - 9oU 

We obtain a solution of this system under the assumption that the parameter h 2 = H~/8~p is 
small, i.e., taking into account the magnetic pressure only as a correction. For h = = O, the 
solution of the system is presented in [7]. Here, we take into account the corrections 
arising due to the magnetic pressure, in order to determine the effect of the magnetic field 
at the nonlinear stage of development of the instability of the front. It turns out that the 
displacements ~,2, in the first and second approximations, respectively, are coupled by 
the following differential equation: 

d~ d In u ~o u dZ~ 0~ 
a - F -  ~2 a~ - 2~o ax ~ + 0 - n / (~ ) ) .  

F o r  t h e  c a s e  o f  a n  e x p o n e n t i a l  d e p e n d e n c e  o f  t h e  d e n s i t y  Oo ~ e x p ( - - x / Z )  

[~, i - , l l  ) ~ =t ~-+---x-o~ (t~,- ~), 

~ x  (t) 
~-~, Oo = o(t  = o ) .  

Here 

x (t) = x o + -~- 

and, in addition, ~2 < ~i, if k~o < ~ (this inequality is satisfied when to < l). 

Figure 1 shows the numerically computed change in the form of the distortions on the 
front as the unperturbed front moves forward. The position of the latter for successive 
values of the dimensionless coordinate z is marked by the line. The starting distortion has 
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a sinusoidal form $ = ~o sin ~y, and the following values of the parameters are adopted: 
y : 5/3, h 2 = 1/9, 8o = 0.l, ~o = 0.11 (No = @o). Figure la-c refers to the positions 
z = 0, i, and 1.5 and the corresponding times are determined by the dependence X(t) in Eq. 
(3). The extrapolation of the results to large z can only have a qualitative meaning, because 
higher-order nonlinearities enter the picture. In the example studied, the rate of develop- 
ment of the instability is approximately two times higher than in the absence of a field. 

If in bhe first approximation the growth in the displacements of the front from its 
equilibrium position occurs symmetrically relative to the lagging and leading sections, then 
asymmetry appears when nonlinear corrections are included: Leading occurs relatively more 
rapidly than lagging of the elements of the front, and this effect is all the more signifi- 
cant the higher the amplitude of the displacements and the curvature of the front. The 
correction arising due to the magnetic pressure, as calculations with all adiabatic indices 
in the interval indicated show, has one and the same sign. For small enough h, this in- 
creases the slope of the front, because its protrusions with @ # 0 are a~celerated more 
strongly with respect to the side sections than in the absence of a magnetic field. In this 
case, y = 2; 5/3; 4/3; 6/5 and f = --0.08; --1.13; --5.19; --26.22. 

Thus a magnetic field always amplifies the instability, because it increases the rate 
of growth of the velocity of the unperturbed front with time. We note that the instability 
which we studied does not reduce to known forms of instability of the motion of a conducting 
medium, for example, to a Rayleigh--Taylor instability. Indeed, in a system in which the un- 
perturbed front is at rest, the less dense unperturbed ~edium is accelerated toward the front 
so that a light gas is more effective than a heavy gas, and vice versa. 

The instability examined can play a definite role in the motion of shock waves in a cos- 
mic plasma and, apparently, in the laboratory plasma also [9], for example, in setups in 
which the pinch effect appears. 
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